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Abstract

A model for a financial asset is constructed with two types of agents, who differ in terms of

their beliefs. The proportion of the two types changes over time according to stochastic

processes which model the interaction between the agents. Agents do not persist in holding

‘wrong’ beliefs and bubble-like phenomena in the asset price occur. We consider tests for

detecting bubbles in the conditional mean and multiple changes in the conditional variance of

the process. A wavelet analysis of the series generated by our models shows that the strong

persistence in the volatility is likely to be the outcome of a mix of changes in regimes and a

moderate level of long-range dependence. These results are consistent with what has been

observed by Kokoszka and Teyssière (J. Bus. Econ. Stat. (2002) under revision) and Teyssière

(In: G. Rangarajan, M. Ding (Eds.), Processes with Long Range Correlations: Theory and

Applications, Lecture Notes in Physics, Vol. 621, Springer, Berlin, 2003, pp. 251–269).
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I can calculate the motions of heavenly bodies but not the madness of people.
Isaac Newton

1. Introduction

Although the presence of ‘‘bubbles’’ and ‘‘herding’’ behaviour in financial markets
is widely accepted there are still few theoretical models which generate such
phenomena. Yet they are widely held to be responsible for the instability of foreign
exchange markets for example. Indeed, ‘‘price bubbles’’ in markets although
particularly associated with the markets for financial assets, have been documented
for a wide variety of markets over a considerable period of time. One of the earliest
bubbles was that in the price of red mullet in the first century A.D. The red mullet
fever is documented by Cicero, Horace, Juvenal and Martial. A survey of other
historical bubbles, such as the Tulip, South Sea and Mississippi bubbles, may be found
in Garber (2000). More recently there has been a substantial literature on the
theoretical basic for and testing of bubbles (see for example Blanchard and Watson,
1982; Flood and Garber, 1980; Meese, 1986; Tirole, 1985; West, 1988; Woo, 1987;
Stiglitz, 1990; Flood and Hodrick, 1990; Donaldson and Kamstra, 1996; Avery and
Zemsky, 1998; Shiller, 2000; Wu and Xiao, 2002). One argument that has been
advanced is that self reinforcing swings of opinion cause departures from
fundamentals, Shiller (1981) observes that attention seems to switch from one share
to another in financial markets without any particular change in the fundamentals
associated with the share in question. Yet as the title of Shiller’s (2000) book,
‘‘Irrational Exuberance’’ suggests, the implication is that such behaviour is irrational.
The purpose of this paper is to suggest that this is not the case. We will analyse a

situation in which the participants in the market can choose between several
forecasting rules. The nature of these speculative and self-reinforcing rules will
determine the demands of the various agents and determine the evolution of the
equilibrium prices. We give a simple example in which people have a prospect of
investing at home or abroad and they are influenced in their choices of rules and
hence in their decisions by the yields obtained by their past choices and by, of course,
the movements of the exchange rate. In this model self-reinforcing changes in the
exchange rate can occur, since as the number of individuals following a rule increases
the success of that rule increases and more people tend to follow it. If the rule is an
extrapolatory one then the exchange rate will leave its ‘‘fundamental’’ value and a
‘‘bubble’’ will occur. This sort of bubble is caused by switches in and transmission of
expectation formation. For the reason mentioned this is self reinforcing and causes
people to herd on one particular alternative type of forecast and eventually to switch
back to another rule. In this case what is important is that there will be an important
demand for the asset in question even if the underlying fundamentals do not seem to
justify this.
In switching in this way, market participants are not being irrational. They will

have good reason to focus on one opinion, one share or one currency for a period
and then shift to another and a model of a stochastic process which results from such
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behaviour is proposed. Thus, it is the shifting composition of expectations that drives
asset movements, in our case the exchange rate, and this is of course, at variance with
the standard model in which expectations are homogeneous and rational and, of
course, where no trade takes place. This is at variance with simple empirical
observation of the spot market for foreign exchange where approximately $1.2
trillion per day was traded in 2001, for example.
As Bacchetta and van Wincoop (2003) point out, the obvious explanation lies in

the heterogeneity of the agents on the market and, in particular, in the heterogeneity
of their expectations. In the standard ‘‘representative agent’’ model there is no place
for such heterogeneity and many authors have suggested that this is the reason for
the poor predictive power of such models; evidence for the latter is given by Meese
and Rogoff (1983), Frankel and Rose (1995) and Cheung et al. (2002). Furthermore,
empirical observations suggest that expectations of actors on financial markets are
indeed heterogeneous (see Chionis and MacDonald, 2002).
A number of authors have introduced heterogeneous expectations into markets in

different ways. One idea is simply to introduce agents who systematically have
‘‘wrong’’ expectations but who may survive nevertheless, such models were
pioneered by De Long et al. (1989) who introduced ‘‘noise traders’’. Such a solution
to the problem is not very appealing and if one takes account of the idea that agents
may learn it is difficult to accept that certain actors will persist in their error. Another
alternative is to introduce dispersed information into the model and one approach
suggested by Townsend (1983) is to have symmetrically dispersed information and to
analyse the consequences of ‘‘higher order expectations’’, i.e., expectations about
others’ expectations. The idea here is that a small amount of non-fundamental trade
may generate considerable volatility since traders perceive movements in asset prices
as conveying information about future values of fundamentals (see Allen et al.,
2003). Again, despite the more sophisticated reasoning attributed to agents, a certain
degree of irrational behaviour is needed to generate the results.
Up to this point we have mentioned bubbles without being very precise about

what we mean. In fact, there are two basic problems involved in the discussion of
bubbles, on the one hand their definition, and on the other their detection and
identification. In this paper, we will present several variants on an economic model in
which expectations can be heterogeneous, where agents learn from their experience
of using different rules, how to form their expectations, where agents are not
systematically wrong, and where departures from fundamentals can occur but where
there is always a return to fundamentals. Thus we construct a model with reasonable
properties which generates ‘‘bubbles’’ and then examine how various of the tests
proposed for detecting bubbles perform on the data generated by the models.
These processes produce the bubble-like phenomena resulting from agents

changing their forecasts. In introducing bubbles we follow Evans (1991), with two
differences. Firstly, instead of simply testing data from a stochastic process with
bubble-like characteristics, we use data from a model of economic behaviour with
interacting agents. Secondly, this model is characterized by switches from one type of
stochastic process to another, and is a particular instance of a random change-point
process.
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This lead us to consider here the statistical methods for the detection of changes in
regimes. Recent research work by Kokoszka and Leipus (1999, 2000), Horváth et al.
(2001, 2004), Mikosch and Stărică (1999), Berkes et al. (2002, 2003) and Kokoszka
and Teyssière (2002) on the issue of change-point testing for the class of GARCH
processes motivated preliminary studies by Teyssière (2003) and Kirman and
Teyssière (2002b) which shows that these tests detect switches in the volatility process
for this class of microeconomic models, and further can be used for the detection of
bubbles. The relevance of the use of this class of change-points tests is reinforced by
Mikosch’s works (1999), which revealed that changes in the volatility of asset prices
match macroeconomic switches from expansion to recession and vice versa. It then
appears that the phenomena of bubbles in asset prices, persistence and changes in
their volatility might be closely related. This is of practical interest since the
phenomena of persistence and changes in volatility can be formally defined and then
detected by statistical methods, while there is no formal definition for bubbles which
makes their detection more problematic.
We will require two features of bubbles which go beyond the simple departure

from fundamentals. Firstly, they should ‘‘burst’’ at some time and not be perpetually
explosive (see Diba and Grossman, 1988), and secondly that they should be
endogenous, i.e., not directly produced by exogenous shocks.
The earlier part of the literature on bubbles, such as the contributions of Le Roy

and Porter (1981), Shiller (1981) and Blanchard and Watson (1982), all came to the
view that asset prices were too volatile to be explained by fundamentals alone. Thus
it was argued that there was ‘‘excess volatility’’. Meese and Rogoff (1983) came to
the same conclusion for exchange rates.
The debate has, however, swung somewhat in the opposite direction. In part it has

been suggested that the econometric analysis in the papers mentioned was faulty and
in part that the process governing the fundamentals had been misspecified, a good
idea of the main issues in this discussion can be obtained from Campbell and Shiller
(1987), Mankiw et al. (1985), Marsh and Merten (1986), West (1987, 1988), Flood
and Hodrick (1990) and Donaldson and Kamstra (1996), or even that some
unobserved fundamentals might have been omitted (see Hamilton and Whiteman,
1985). Alternatively as suggested by Miller (1991) even small changes may bring
about large shifts in prices if horizons are sufficiently long. Two other facets of the
debate have also developed: that based on the psychology of investors’ behaviour
(see Wärneryd, 2001), and that which shows that bubbles will occur, even for assets
with perfectly defined fundamental values in experimental markets (see Caginalp
et al., 1998).
Diba and Grossman (1988) claimed that the data for stock prices does not have the

explosive characteristics one would expect if bubbles existed. Perron (1989) however,
suggested that the unit root tests commonly used may fail to reject the presence of unit
roots, when in fact the underlying process is one with a ‘‘broken trend’’ or a shift in
regime. Indeed Evans (1991) has found, by testing data from simulating a stochastic
process known to contain bubbles, that in general the unit roots hypothesis was not
rejected. Recently, Wu and Xiao (2002) have shown that these procedures based on
unit root tests are also unable to detect collapsible bubbles.



ARTICLE IN PRESS

A. Kirman, G. Teyssière / Journal of Economic Dynamics & Control 29 (2005) 765–799 769
The real question seems, however, not to be quite as simple as that discussed in the
general debate on the issue. If asset prices do in general follow fundamentals, but
randomly depart from them, then the situation is rather complicated. If
fundamentals follow a random walk as theory might suggest in the case of stock
prices for example, then for some, maybe substantial, part of the time this is the
process that will be realised. The process that is followed at other periods has, of
course, to be specified.
In particular, it should be clear that the basic point at issue here is not does or does

not the asset price process have unit roots but how far and for how long does it
deviate from that process and how can one separate out these deviations? In the long
run, as indeed the word suggests, bubbles do not matter, but their impact in the short
run may be very significant.
In the foreign exchange market which we take as an example, roughly two thirds

of all turnover consists of spot transactions. Since dealers have very short horizons,
many have to have a closed position at the end of the day, and their customers are
sensitive to price changes, it is clear that episodes in which extrapolatory behaviour
can take the market away from fundamentals can be very important. Yet most
dealers argue that, ‘‘in the long run fundamentals matter’’ (see Barrow, 1994). The
way in which fundamentals eventually pull prices back is through underlying order
flows (see Kouri, 1983; Lyons, 2001), but since these in turn are affected by the
evolution of current prices the magnitude and duration of deviations are difficult to
calculate.
We consider here a class of models which has the basic characteristics just

outlined. This class of microeconomic models generating non-homogeneous
processes is of interest in financial econometrics as it constitutes a microeconomic-
based framework for the analysis of long-range dependence in asset price volatility.
These empirical volatility processes are characterized by a slow hyperbolic decay of
the autocorrelation function and a singularity of their spectrum near the zero
frequency, properties which are typical of long-range dependent, henceforth LRD,
processes, also called strongly dependent or long-memory processes. However, two
features lead us to conclude that volatility processes are more complex than standard
LRD processes.
Volatility processes are not trended and then differ from the most common LRD

process, the fractionally integrated IðdÞ process (see Granger, 2002 for further
details). Thus, volatility processes might be the realisation of either a more
sophisticated LRD process (see e.g., Teyssière, 1996), or a process which spuriously
exhibits the properties of LRD processes mentioned above. In Kirman and Teyssière
(2002b) we called these latter processes ‘‘pseudo long-memory processes’’. A process
of interest is the non-homogeneous GARCH volatility process, i.e., a GARCH
process with coefficients constant only on a time interval of finite length. Mikosch
and Stărică (1999) have demonstrated that the power transformation of a non-
homogeneous GARCH(1,1) process, with coefficients changing so that the
unconditional variance of the process is not constant, displays strong dependence,
the intensity of which is proportional to the magnitude of the change in the
unconditional variance. Evidence reported in Teyssière (2003) show that R=S-type
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tests for stationarity against LRD alternatives wrongly detect LRD-type behaviour
on power transformations of non-homogeneous GARCH processes, while the power
of these tests tend to their size when the unconditional variance of the process is
constant. Thus, the empirical properties of asset price volatility might be a statistical
artefact, and all usual conclusions in the financial econometric literature on the
presence of strong dependence in asset price volatility might be simply the
consequence of the inadequacy of the standard statistical procedures for adjudicat-
ing between genuine long range dependence and switches in regimes.
A multivariate analysis of the empirical LRD properties pioneered by Teyssière

(1997, 1998) show that the volatility and co-volatility of some financial time series
share a common intensity of strong dependence. Since it is likely that financial time
series are affected by common breaks, common breaks in the volatility processes
might be the cause of the empirically observed commonality of the strong
dependence in the volatility process (see Teyssière, 2003; and the last section of
Granger and Hyung, 1999). Following a personal communication from Murad
Taqqu and Patrice Abry, Teyssière (2003) and Kokoszka and Teyssière (2002)
conducted a wavelet based analysis of the LRD properties of asset prices empirical
volatilities and co-volatilities, since the multi-resolution principle of wavelets analysis
makes this method robust to un-periodic changes in mean of the process. Simulated
and empirical results reported in Teyssière (2003) and Kokoszka and Teyssière
(2002) suggest that the volatility and co-volatility processes of asset prices returns
mix change-point and LRD processes with a moderate level of persistence.
This paper is organized as follows. The class of economic models generating these

bubbles are introduced in Section 2. The opinion diffusion processes are detailed in
Section 3. In Section 4, we discuss the LRD and change-point processes alternatives
and introduce the wavelet analysis for adjudicating between them. The testing
procedure for the detection of collapsible bubbles and change-points, with the
simulation results are presented in Section 5. Section 6 concludes.
2. Economic model with heterogeneous agents

This economic models, presented here are variants on that developed in its
operational form by Kirman and Teyssière (2002a, b) and Teyssière (2003). It has the
essential feature that the price process departs from fundamentals and then returns
to them. In addition, bubbles can be both negative and positive. Models which are
close in spirit to this sort of model are those of Brock and Hommes (1999), and
LeBaron (2001).
We now give a brief description of the model. The different variants of which are

then simulated to generate the data to be used for evaluating the recent testing
procedures for bubbles in levels and change-points in volatility or their absence.
Agents are faced with a price process Pt for a financial asset and form expectations

about tomorrow’s prices. There are two different rules for forming expectations and
each agent uses one of them. However, the expectations of the individual agents will
change over time as they decide which forecasting rule to adopt. In the first case they
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are influenced by random meetings with other agents. In the other case they will base
their judgment on the basis of the success of the rule. Lastly they may have a
combination of the two. Call the two methods of forming expectations the two
‘‘opinions’’ in the model. These could be founded on the forecasts given by ‘‘gurus’’
who offer their advice or could be considered as being reasonable rules from which
the agents choose. There is nothing in our model which would exclude having any
finite number of such rules. In the case that we consider, that with two possible rules,
then if there are N agents, we say that

Definition 1. The state of the system at time t is defined by the number kt of agents
holding opinion one, i.e., kt 2 f0; 1; . . . ;Ng.

The processes governing the evolution of the opinion diffusion process fktg will be
introduced in Section 3.
Consider two types of individuals who forecast the value of an asset or, as in the

model developed by Frankel and Froot (1986), the value of the exchange rate.
‘‘Fundamentalists’’ believe that the exchange rate Pt at time t is related to some

underlying fundamental �Pt which might be a constant �P, some long run equilibrium,
or might be governed by some dynamic deterministic or stochastic process. We
consider here a standard random walk process for �Pt

�Pt ¼ �Pt�1 þ et; et 	 Nð0; s2e Þ: ð1Þ

Fundamentalists’ forecast for the value at the next period, conditional on the
information set I t available at time t, is given by

Ef ðPtþ1jI tÞ ¼ �Pt þ
XMf

j¼1

njðPt�jþ1 � �Pt�jÞ; ð2Þ

where nj ; j ¼ 1; . . . ;Mf are positive constants, Mf is the memory of the
fundamentalists. In most of the early models the memory of the fundamentalist
and of the chartist was limited to one period.
Chartists, on the other hand, forecast by simple extrapolation of the past history

of prices and hence predict that the next period exchange rate will be given by

EcðPtþ1jI tÞ ¼
XMc

j¼0

hjPt�j ; ð3Þ

where hj ; j ¼ 0; . . . ;Mc are constants, Mc is the memory of the chartists. It would, of
course, be interesting to try other more sophisticated forms of extrapolation. These
would change the forecasts of the chartists but would not change the basic stochastic
alternation between regimes for the case of epidemiologic opinion diffusion.
The market view or forecast is given by a weighted average of the two forecasts,

i.e.,

EmðPtþ1jI tÞ ¼ wtE
f ðPtþ1jI tÞ þ ð1� wtÞE

cðPtþ1jI tÞ; ð4Þ
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where wt is the proportion of fundamentalists. The weights are determined in
Frankel and Froot’s model by portfolio managers who effectively choose the weights
in such a way as to make the actual outcome constant with the market forecast.
In the model considered here the weights wt are determined endogenously, and

they reflect the number of agents who act according to each view. To see this
consider the process as taking place in two steps. Firstly, an individual meets another
and forms an opinion after this meeting about how prices will change. ‘‘Meeting’’ of
course does not mean meeting in the literal physical sense, a better word might be
‘‘contact’’. Dealers on markets receive and transmit information in several ways and
each of these contacts could be a meeting in our sense.
A market based purely on private information would not be totally realistic and it

is often the case that dealers take account of ‘‘market sentiment’’. This is in line with
Keynes’ observation that it is better to be wrong with the crowd than wrong on your
own. Thus we introduce a noisy market signal as an indicator of how many people
hold each opinion.
The process can be described as follows:
1.
 Agents meet each other at random and are converted to each others’ opinions as
defined in the process described above. Consider kt as the number of individuals
at time t who are ‘‘fundamentalists’’ and the remaining N � kt as ‘‘chartists’’.
Allow some fixed number M of meetings to take place at each time.
2.
 Defining qt ¼ kt=N each agent now makes an observation of qt i.e., tries to assess
which opinion is in the majority. She observes qt with some noise. Thus, the signal
she receives is

qi;t ¼ qt þ ei;t; ei;t 	 Nð0;s2qÞ; qi;t 2 ½0; 1�: ð5Þ

If now agent i receives a signal qi;tX1=2, then she will make a fundamentalist
forecast since the majority is doing so. Conversely, if qi;to1=2 she will forecast as
a chartist and act accordingly. The number and proportion of agents who base
their demand on fundamental forecasts are therefore given by

wt ¼ N�1
XN

i¼1

# i : qi;tX
1

2

� �
: ð6Þ
As one of the requirements at the outset we wish agents to take account of both
local and global information. In fact the outcomes in our model will depend on the
relation between the two. For a discussion of similar problems see Ellison and
Fudenberg (1993). The relationship between the processes fwtg and fktg depends on
the variance of the noise in the signal about the majority. If this variance is large, the
signal is of little value and people will choose more or less at random. In this case, the
process fwtg will spend more time close to the equal proportion situation than does
the fktg process. It seems therefore, reasonable to consider the variance as small since
otherwise agents should give more weight to their private information. Having now
determined the proportion of agents who forecast as fundamentalists the market
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forecast is given by Eq. (4) and the market forecast of its change by

DmPtþ1jI t ¼ EmðPtþ1jI tÞ � Pt: ð7Þ

The price on the market, i.e., the market exchange rate if one is considering the
market for foreign exchange, is given by

Pt ¼ cEmðPtþ1jI tÞ þ Zt; ð8Þ

where c is a constant and Zt is an index of a vector of fundamental variables
according to Frankel and Froot (1986). Can this model be derived from individual
behaviour? To see that the answer is positive consider the following simple model,
suggested by Michael Woodford: agent i has a utility function given by

UiðW i
tþ1Þ ¼ EðW i

tþ1Þ � lVarðW i
tþ1Þ; ð9Þ

where l denotes the risk aversion coefficient, Eð:Þ denotes the expectation operator
and W i

tþ1, her wealth at time t þ 1, is given by

W i
tþ1 ¼ ð1þ rtþ1ÞPtþ1d

i
t þ ðW i

t � Ptd
i
tÞð1þ rÞ; ð10Þ

where the variables are defined as follows

 rtþ1 is the dividend in foreign currency paid on one unit of foreign currency,


 Ptþ1 is the exchange rate at t þ 1,


 di

t is the demand by the ith individual for foreign currency,


 r is the interest rate on holdings of domestic currency.
The variables Ptþ1 and rtþ1 are both considered by agents to be random variables.
The first two moments of the distribution of Ptþ1, from the point of view of
individual i, are given by

EðPtþ1Þ ¼ DPi
tþ1 þ Pt; VarðPtþ1Þ ¼ s2P ð11Þ

and for rtþ1 by

Eðrtþ1Þ ¼ r; Varðrtþ1Þ ¼ s2r: ð12Þ

The variance of Ptþ1 is, in reality, time dependent, but we are following in the
tradition now established in the literature of allowing some error of perception by
our agents who consider that the conditional variance is constant. Furthermore,
assume rtþ1 and Ptþ1 to be independent. From these assumptions

EðW i
tþ1jI tÞ ¼ ð1þ rÞEiðPtþ1jI tÞd

i
t þ ðW i

t � Ptd
i
tÞð1þ rÞ ð13Þ

and

VarðW i
tþ1jI tÞ ¼ ðdi

tÞ
2zt with zt ¼ VarðPtþ1ð1þ rtþ1ÞÞ: ð14Þ

Demand di
t is found by maximising utility and writing the first-order condition

ð1þ rÞEiðPtþ1jI tÞ � ð1þ rÞPt � 2ztldi
t ¼ 0; ð15Þ
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where Eið:jI tÞ denotes the expectation of an agent of type i. Since wt is the proportion
of fundamentalists at time t, the market demand is then given by

dt ¼
ð1þ rÞðwtE

f ðPtþ1jI tÞ þ ð1� wtÞE
cðPtþ1jI tÞÞ � ð1þ rÞPt

2ztl
: ð16Þ

The supply of foreign exchange is given by X t and since agents only differ in their
forecasts as to the value of the future exchange rate, then the market is in equilibrium
if X t ¼ dt, which gives

ð1þ rÞPt ¼ ð1þ rÞðwtE
f ðPtþ1jI tÞ þ ð1� wtÞE

cðPtþ1jI tÞÞ � 2ztlX t: ð17Þ

which is of the form of Eq. (8) with c and Zt defined appropriately.
A standard condition for a solution to Eq. (17) is

ð1þ rÞ

ð1þ rÞ
a wt

X
coefficients of Pt in Ef ðPtþ1jI tÞ

�
þð1� wtÞ

X
coefficients of Pt in EcðPtþ1jI tÞ

�
; ð18Þ

for all wt 2 ½0; 1�.
Clearly the ‘‘fundamental’’ value �Pt should be linked to X t and we suppose here

that 2ztlX t=ð1þ rÞ ¼ $ �Pt. We are in effect considering here that X t is a ‘‘liquidity
demand’’, i.e., not one generated by speculative motives and therefore exogenous to
the model. If we assume that Mf ¼ Mc ¼ 1, then the equilibrium price is given by

Pt ¼
wt � $

A
�Pt �

wtn1
A

�Pt�1 þ
ð1� wtÞh1

A
Pt�1; A ¼

1þ r

1þ r
� ð1� wtÞh0 � wtn1:

ð19Þ

We set $ ¼ 1� ð1þ rÞ=ð1þ rÞ, so that if �Pt ¼ �P, 8t, then when wt ¼ 1, i.e., all
agents are fundamentalists, Pt ¼ �P.1

To come back to our model, when fwtg switches from 0 to 1 and vice versa,
Eq. (19) defines a change-point process in the conditional mean. However, Figs. 1
and 2, which refer to different processes fwtg, show that this process never herds on
the extremes 0 and 1, and sometimes moves gradually. Thus, Eq. (19) defines a
process more complex than a pure change-point process in the conditional mean. We
wish to test whether this varying regime process generates the empirical properties of
volatility processes. As shown by Eqs. (5) and (6), the process fwtg is the composition
of the process fktg and a majority process, i.e., the ‘‘beauty queen’’ idea by Keynes.
The herding behaviour of the process fwtg is controlled by the parameter sq in Eq. (5)
and the parameters governing the herding behaviour of the opinion diffusion
process fktg.
1It is of interest to link our model to that of the standard Rational Expectation model (see McCallum,

1983). It should be noted that our model differs from the standard case examined by George Evans (1986)

in his pioneering article on rational bubbles. We thank an anonymous referee for these observations.
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Fig. 2. A realisation of the process fwtg. The vertical line shows the location of the change-point detected

by the CUSUM test of Kokoszka and Leipus (2000).
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Fig. 1. A realisation of the process fwtg. The vertical line shows the location of the change-point detected

by the CUSUM test of Kokoszka and Leipus (2000).
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3. Opinions diffusion processes

3.1. Epidemiologic diffusion

In a first approach, we consider that the process fktg follows an epidemiologic
diffusion process developed by Hans Föllmer and originally based on experimental
evidence on the behaviour of ants and considered by Kirman (1993, 1991). The
stochastic process governing the state process fktg evolves as follows. Two agents
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meet at random and the first is converted to the second’s view with probability
ð1� dÞ. If the meeting is considered as a drawing from an urn with balls of two
different colours, it is obvious that which agents is the ‘‘first’’ and which is the
‘‘second’’ is of no importance since the symmetric event occurs with the same
probability. There is also a small probability e that the first agent will change her
opinion independently of whom she meets. This is a technical necessity to prevent the
process from being ‘‘absorbed’’ into one of the two states 0 or N, but can be allowed
to go to zero as N becomes large. This e can be thought of as the replacement of
some old agents in each new period by agents who may hold either opinion, or by
some external shock which influences some people’s expectations. Indeed in what
follows we shall require for the basic results that e be small.
The process fktg then evolves as follows

ð20Þ

The first problem is to look at the equilibrium distribution mðkÞ, k ¼ 0; . . . ;N of
the Markov Chain defined by (20). This is important in the economic model since it
describes the proportion of time that the system will spend in each state. The
equilibrium distribution is given by

mðkÞ ¼
XN

l¼0

mðlÞpðl; kÞ; ð21Þ

but given that the process is symmetric and reversible then it follows that

mðlÞpðl; kÞ ¼ mðkÞpðk; lÞ: ð22Þ

From this expression one obtains

mðk þ 1Þ

mðkÞ
¼

pðk; k þ 1Þ

pðk þ 1; kÞ
¼

ð1� ðk=NÞÞðeþ ð1� dÞk=ðN � 1ÞÞ
kþ1
N

ðeþ ð1� dÞð1� k=ðN � 1ÞÞÞ
; ð23Þ

since it is clear from (22) that

mðkÞ ¼
mð1Þ
mð0Þ � � �

mðkÞ
mðk�1Þ

1þ
PN

l¼1
mð1Þ
mð0Þ � � �

mðlÞ
mðl�1Þ

: ð24Þ

Now the form of mðkÞ will depend, naturally, on the values of e and d. The case of
particular interest here is that in which mðkÞ has the form indicated in Fig. 3. It is
easy to see that if eoð1� dÞ=ðN � 1Þ then mðkÞ will indeed be convex. Thus this
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Fig. 3. mðkÞ with e ¼ 0:005, d ¼ 0:01, N ¼ 100.
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case, in which the process spends most of its time in the extremes, corresponds
to the case in which the probability of ‘‘self conversion’’ is small relative to the
probability of being converted by the person one meets. Although this probability of
conversion is independent of the numbers in each group, which type will actually
meet which type depends on the relative numbers in each type at any moment, i.e.,
on the state of the system. Thus, when one type is in the minority conversion of any
individual is much less likely than when the numbers of the two types are fairly
equal.
The emight be considered as being simply a technical artefact, therefore it is worth

looking at what happens to the process when N becomes large and e goes to zero.
Consider the asymptotic form of mðkÞ when we choose e for each N so that
eoð1� dÞ=N. When N becomes large redefine m as mðk=NÞ and consider the limit
distribution as N ! 1. Call this limit distribution, which will be continuous, f. Then
one can prove the following:
Proposition 1. f is the density of a symmetric Beta distribution, i.e., f ðxÞ ¼

CxB�1ð1� xÞB�1, where C is a constant.

This proposition was proved by Föllmer and the proof is given in Kirman (1991).
For any given value of k, mðk=NÞ increases proportionately with N. Thus, for Bo1
the distribution has the form illustrated in Fig. 3.
This stochastic model of shifts of opinion given here is related to the urn models of

Arthur et al. (1986) and also to models which have been developed for shifts in voter
opinion; see the examples given by Weidlich, cited in Haken (1977), where a similar
bimodal distribution is derived. The latter model could also have been taken as the
basis for the conversion from one opinion to another here.
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3.2. Learning processes

For the epidemiologic process developed in the previous section, the proportion of
fundamentalists and the forecasts of agents do not depend on the past performance
of forecasts functions. Teyssière (2003) introduced a diffusion process for kt which
depends on the accuracy of the forecast functions in the recent periods: the
probability of choosing a particular forecast function depends on its comparative
performance over the competing forecast function. We use Theil’s (1961) U-statistic
as measure of forecast accuracy over the last M periods

U
j
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1

PM
l¼1 wlðPt�l � EjðPt�l jI t�1�lÞÞ

2

M�1
PM

l¼1wlP
2
t�l

s
; j 2 fc; f g;

X
l

wl ¼ 1; ð25Þ

M being the learning memory of agents, the weights wl ; l ¼ 1; . . . ;M representing
the relative importance of the forecast errors at time t � l. We choose here an
exponential choice function gjð�Þ for the forecast function Ejð�Þ, i.e.,

gjðtÞ ¼ expð�RU
j
MÞ; R40; j 2 fc; f g; ð26Þ

the parameter R being the intensity of choice. At time t, agents will chose with
probability pf ðtÞ the fundamentalist forecast function, where

pf ðtÞ ¼
gf ðtÞ

gf ðtÞ þ gcðtÞ
; ð27Þ

the probability of choosing the chartist forecast function is then pcðtÞ ¼ 1� pf ðtÞ.
This choice mechanism is standard in the economic literature (see Aoki, 1996). Brock
and Hommes (1997) considered a similar mechanism for choosing between chartist
and fundamentalist view, the choice being based on the comparison between the
realized profits without normalising to a common scale.

3.3. Epidemiologic processes with learning

We assume here that agents keep a record of the past meetings with other agents,
in particular they keep in memory the relevance of the opinions of the agents they
met. If an agent’s opinion in the previous meeting appeared to be the ‘‘right’’ one,
then the probability of conversion to that agent’s opinion is equal to ð1� dlÞ, while if
this opinion turned out to be ‘‘wrong’’, this probability of conversion is then equal to
ð1� dhÞ, with dh4dl . The herding behaviour of the process fktg is controlled by the
two parameters dh and dl . By ‘‘right’’, we mean in the simplest model that the
forecast was closer to the realised value than that of the other opinion.
We extend this learning mechanism by taking into account the M previous

meetings with the agent, e.g., the probability of conversion is equal ð1� d1=M

h Þ if
agent’s views were wrong in the last M meetings, and is equal to ð1� dM

l Þ if agent’s
views were right in the last M meetings. We can see that

ð1� dM
l Þ ! 1; ð1� d1=M

h Þ ! 0; M ! 1: ð28Þ



ARTICLE IN PRESS

A. Kirman, G. Teyssière / Journal of Economic Dynamics & Control 29 (2005) 765–799 779
Generally, if agent was right u times in the last M meetings, the probability that he
converts another agent is equal to

1� d%
¼ 1� dð1=ðM�uÞÞ

h dul if uoM ;

¼ 1� dM
l if u ¼ M:

ð29Þ

We generalize this approach by considering that d takes a continuum of values in
½0; 1�, and make d dependent on the magnitude of forecast accuracy Ui of agent i, i.e.,

d ¼ Kþ
expð�ZUiÞ

expð�ZU cÞ þ expð�ZU f Þ
; KX0; Z40;

d 2 ½K; 1�; i ¼ 1; . . . ;N; ð30Þ

where K is the minimum value for d, Ui ¼ U c
M if agent i is chartist and Ui ¼ U f

M if
agent i is fundamentalist, U

j
M , j 2 fc; f g, being defined by Eq. (25). This approach,

like that defined in (27), can be derived from an ‘‘exploration’’/‘‘exploitation’’ trade-
off, where agents weight their probabilities by their previous gains from an action
and the information they could accumulate by trying other alternatives.
4. Long-range dependent vs. change-point processes

According to previous studies by Kirman and Teyssière (2002a, b) and Teyssière
(2003), the series Pt generated by the underlying Markov process described above
have the following features: unit roots, heteroskedastic errors and a particular type
of nonlinearity such that CovðjRtj

n; jRtþjj
nÞ decays slowly as j ! 1, where Rt ¼

D lnðPtÞ and n40, this decay being the slowest for n ¼ 1. This strong dependence is
explained by at least two classes of conditional variance processes: the LRD-ARCH
processes and some non-homogeneous GARCH processes, i.e., the GARCH
processes with parameters changing so that the unconditional variance of the
process is not constant. This nonstationarity of the process might explain the
behaviour of the sample behaviour and extremes of the correlations structure of
financial time series, that cannot be captured by stationary GARCH(1,1) processes
(see Mikosch and Stărică, 2000, 2002).
The class of LRD-ARCH processes, introduced by Robinson (1991), extends the

class of ARCH/GARCH models of Engle (1982) to the more general case of
ARCH(1) models. This class of models has been further developed by Granger and
Ding (1995), Ding and Granger (1996) and other authors. The general form of a
LRD-ARCH process is

Rt ¼ mR þ stet; et 	 Dð0; 1Þ; sn
t ¼ oþ jðLÞgðetÞ; ð31Þ

where mR denotes the regression function, jðLÞ ¼
P1

i¼1 jiL
i is an infinite order lag

polynomial the coefficients of which are positive and have asymptotically the
following hyperbolic rate of decay jj ¼ Oðj�ð1þW=2ÞÞ, where W 2 ð0; 1Þ is the scaling
parameter, gðetÞ is a function of the innovations et including non-linear transforma-
tions, Dð0; 1Þ is a distribution with mean equal to zero and variance equal to one.
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With these assumptions, the autocorrelation function (ACF) of the sequence of
squared returns satisfies

CovðR2
t ;R

2
tþjÞ ¼ OðjW�1Þ; ð32Þ

where the scaling parameter W governs the slow rate of decay of the ACF and then
parsimoniously summarizes the degree of long-range dependence of the series.
Interested readers are referred to Beran (1994) and Robinson (1994) for a complete
reference on long-memory processes, and to Giraitis et al. (2000a, 2004),
KazakeviWius and Leipus (2002, 2003), for the memory properties of the class of
ARCH(1) processes. The strong dependence in the conditional variance can be
alternatively modeled by the long-memory stochastic volatility processes, the
memory properties of which have been investigated by Robinson (2001).
Although this class of LRD-ARCH processes is appealing, the empirical

properties of volatility series are more complex than the ones of the simple LRD
fractionally integrated IðdÞ process, where the fractional differencing parameter d is
related to the scaling parameter W by W ¼ 2d. An IðdÞ process exhibits local trends,
the slope of which is increasing with the parameter d, while the empirical volatility
series jRtj

n are not trended. These features, generously pointed out to us by Clive
Granger in a personal communication in September 2000, are detailed in Granger
(2002). In fact, as explained in Kirman and Teyssière (2002a, b) and Teyssière (2003),
the volatility series generated by our model do not display a trend as well and
resemble the volatility series of asset prices returns.
It is well known that statistical tests wrongly detect long-range dependence when

the true process is a change-point process. In particular, according to Mikosch and
Stărică (1999, 2002) long-range dependence in the volatility process can be spurious
and the consequence of the concatenation of short-range dependent GARCH(1,1)
processes with changing coefficients. A subsequent work by Stărică and Granger
(2001) has shown that a shift in variance model has a better forecast performance for
the volatility than an IðdÞ process. There is a substantial literature on change-point
analysis (see e.g., Csörgö and Horváth, 1997; Basseville and Nikiforov, 1993; and
Brodsky and Darkhovsky, 1993 for recent references), which however focuses on
conditional mean processes. An account on the recent developments in the change-
point detection literature is given in Kokoszka and Leipus (2002), while RaWkauskas
and Suquet (2004) provide a survey on the Hölderian principle for testing for
epidemic changes.
Granger’s remark lead us to consider the occurrence of change-points in the

conditional variance as a possible alternative explanation of the empirical LRD
properties. Since in our model asset prices Pt are a varying combination of the
previous prices Pt�1, and the fundamentals �Pt and �Pt�1, we were first interested in
checking whether we can detect the changes in the proportion of fundamentalists wt

at time t, i.e., the swings in opinion, which generate the long-memory in the volatility
process, as the degree of long-range dependence in the volatility of the models was
linked to the parameters controlling the swings in the process fwtg. In Kirman and
Teyssière (2002b) and Teyssière (2003), we considered some tests for change-points
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motivated by the recent works of Kokoszka and Leipus (1999, 2000), Horváth et al.
(2001) and Kokoszka and Teyssière (2002), who proposed some nonparametric and
parametric tests for change-points in ARCH/GARCH processes. These tests were
able to detect the presence of change-points in the volatility series generated by the
processes presented in Sections 3.1 and 3.2.
Kokoszka and Teyssière (2002) and Teyssière (2003) resorted to a wavelet

estimator of the scaling parameter for adjudicating between LRD and change-point
processes. Unlike Fourier analysis, upon which is based the estimation of the scaling
parameter in the frequency domain, wavelet analysis is a multi-resolution analysis.
Then the wavelet estimation of the scaling parameter will be unaffected by changes in
regime; interested readers are referred to Abry et al. (2000, 2002) for further details
on wavelet analysis. By comparing the estimates of a semiparametric Gaussian
estimator of long-range dependence and the wavelet based estimator, we can
conclude whether the empirical LRD properties of asset price volatilities are either
genuine or a statistical artefact.
We consider here two semiparametric estimators of the scaling parameter W, the

local Whittle estimator developed by Robinson (1995), and the wavelet based
estimator proposed by Veitch and Abry (1999). Both estimators are based on the
assumption that in a close positive neighbourhood of the zero frequency, the
spectrum of a long-memory process fY tg has the form

f ðlÞ � cf l
�W; l ! 0þ; ð33Þ

where cf is a constant. Robinson (1995) considered the local Whittle estimator and
replaced in this estimator the expression of the spectrum by the approximation (33),
and after concentrating in cf , obtained the following estimator for the scaling
parameter W:

Ŵ ¼ arg min
W

ln
1

m

Xm

j¼1

IY ðljÞ

l�W
j

 !
�

W
m

Xm

j¼1

lnðljÞ

( )
; ð34Þ

where IY ðljÞ is the periodogram evaluated on a set of m Fourier frequencies
lj ¼ pj=T ; j ¼ 1; . . . ;m5½T=2�, where ½�� denotes integer part, the bandwidth
parameter m tends to infinity with the sample size T but more slowly since 1=m þ

m=T ! 0 as T ! 1. Under appropriate conditions, which include the differentia-
bility of the spectrum near the zero frequency and the existence of a moving average
representation, the estimator has the following asymptotic distribution

ffiffiffiffi
m

p
ðŴ� WÞ!

d
Nð0; 1Þ; ð35Þ

where !
d

means convergence in distribution. We select m by using the automatic
bandwidth procedure proposed by Henry and Robinson (1996) and studied further
by Henry (2001, 2004).
Veitch and Abry (1999) proposed an estimator of W, which uses the independence

properties of the wavelet coefficients dY ðj; kÞ for fractional Gaussian noise and
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related LRD processes (see Flandrin, 1992). The wavelets coefficients are defined as

dY ðj; kÞ ¼ hY ;cj;ki; ð36Þ

where cj;k is a family of wavelet basis functions fcj;k ¼ 2�j=2c0ð2
�j t � kÞg, j ¼

1; . . . ; J are the octaves or scales, k 2 Z, c0 is the mother wavelet, which hasN zero
moments with NX1, i.e.,Z

tkc0ðtÞdt � 0; k ¼ 0; . . . ;N� 1: ð37Þ

The number N is chosen by the user. By construction, the family of wavelet basis
functions is scale invariant, which can be written as

EdY ðj; �Þ
2
¼ 2jWcf C with C ¼

Z
jlj�WjC0ðlÞj2 dl; ð38Þ

where C0ðlÞ is the Fourier transform of the mother wavelet c0. The scaling
parameter W is estimated from the slope of the linear regression

log2ðEdY ðj; �Þ
2
Þ ¼ jWþ log2ðcf CÞ: ð39Þ

The method by Veitch and Abry (1999) allows one to jointly estimate both
parameters ðW; cf Þ. We use this estimator with the Daubechies wavelets, with N ¼ 2.
The wavelet estimator has approximately the following asymptotic distribution

ffiffiffiffi
T

p
ðŴ� WÞ � N 0;

1

ln2ð2Þ21�j1

� �
; ð40Þ

where j1 is the lowest octave, the LRD behaviour being captured by the octaves
larger than j1. The choice of j1, i.e., the cutoff between short-range dependence and
long-range dependence, is similar to the bandwidth selection problem in semipara-
metric/nonparametric statistics. Bardet et al. (2000) established the exact asymptotic
distribution for this estimator, as the assumption of independence of the wavelets
coefficients dY ðj; kÞ is not true for all LRD processes. Unfortunately, the result by
Bardet et al. (2000) is not of practical use for statistical inference as the asymptotic
variance for this estimator depends on the scaling parameter W.
Teyssière (2003) and Kokoszka and Teyssière (2002) considered series of

volatilities and co-volatilities of FX rates and stock prices and measured the degree
of long-range dependence for these series with these two semiparametric estimators.
They reported interesting empirical results on the discrepancy of the estimated
intensity of strong dependence, as the estimated scaling parameter is far lower when
measured with the wavelet estimator than when measured with the local Whittle
estimator. This lead Kokoszka and Teyssière (2002) and Teyssière (2003) to consider
that the occurrence of long-range dependence in volatility, e.g., of (F)IGARCH
processes might be a large sample artefact of a nonhomogeneous data generating
process and to conduct a change-point analysis of these series. We pursue in this
direction here and conduct a change-point analysis of the different volatility
processes generated by our models. Interested readers are referred to the revised
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version of Kokoszka and Teyssière (2002) where these tests and other ones are
discussed.
5. Simulations and testing

In Kirman and Teyssière (2002a,b) and Teyssière (2003), we show that these
models are able to generate the sort of strong dependence observed in the volatility
of asset returns, and that the degree of long-memory is controlled by the swings in
opinions, i.e., the parameters governing the herding behaviour of the process fwtg.
These parameters are tuned so that the simulated series of returns Rt are Ið0Þ, and
the degree of long-memory in the series jRtj

n generated by the microeconomic
models are similar to the ones empirically observed. We use the statistics proposed
by Lo (1991), Kwiatkowski et al. (1992) and Giraitis et al. (2003a,b) for testing the
memory properties of the simulated series, and evaluate the degree of long-memory
in the volatility series by using the semiparametric estimators proposed by Robinson
(1995) and Giraitis et al. (2000b).

5.1. Testing for bubbles

In the standard methodology for bubbles testing, the logarithms of asset prices is
regressed on the logarithms of fundamentals,

ln Pt ¼ r0 þ r1 ln �Pt þ et ð41Þ

as it is assumed that if asset prices Pt contain a bubble, then the sequence of residuals
fêtg is not stationary. Tests for the existence of unit roots are then applied to the
series of residuals êt of the regression

êt ¼ yêt�1 þ et; ð42Þ

i.e., we test H0: y ¼ 1 against HA: jyjo1, bubbles testing amounts to unit root
testing. There is a huge literature on this issue of unit root testing (see e.g., Dickey
and Fuller, 1979; Phillips and Perron, 1988; MacKinnon, 1996, 1991; Zarepour and
Knight, 1991; Paparoditis and Politis, 2003; Horváth and Kokoszka, 2003; Jach and
Kokoszka, 2004; Kokoszka and Parfionovas, 2004, among others).
We consider here the bootstrap unit root tests by Paparoditis and Politis (2003)

and Kokoszka and Parfionovas (2004), and the subsampling unit root tests by Jach
and Kokoszka (2004). These methods are based on the centered residuals
�̂et ¼ êt � ðT � 1Þ�1

PT
j¼2 êj, t ¼ 2; . . . ;T from regression (42), and consider bootstrap

or subsampling data generating processes which satisfy the null hypothesis H0 for
obtaining a better approximation of the null distribution of the test statistics, and
then increase the power of these tests.
The residual block bootstrap method by Paparoditis and Politis (2003) consists in

constructing B block-bootstrap series satisfying H0 as follows: for each block
bootstrap sample k; k ¼ 1; . . . ;B, we choose an integer b ¼ bðTÞoT such that 1=b þ

b=
ffiffiffiffi
T

p
! 0 as T ! 1, define k ¼ ½ðT � 1Þ=b�, draw with replacement k integers
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i0; . . . ; ik�1 from the set f1; . . . ;T � bg, and build the bootstrap samples ejðkÞ as
follows:

e1ðkÞ ¼ ê1; ejðkÞ ¼ ej�1ðkÞ þ �̂eimþs; j ¼ 2; . . . ; l; l ¼ kb þ 1;

m ¼ ½ðj � 2Þ=bÞ�; s ¼ j � mb � 1; k ¼ 1; . . . ;B: ð43Þ

Let ŷT be the least squares (LS) estimator of y in Eq. (42) and ~ylðkÞ be the LS
estimator of the regression of ejðkÞ on ej�1ðkÞ. For a test of size g, we reject H0 if
TðŷT � 1Þoql;BðgÞ where ql;BðgÞ is the gth quantile of the distribution of lð~ylð�Þ � 1Þ.
The tests by Horváth and Kokoszka (2003), Kokoszka and Parfionovas (2004),

and Jach and Kokoszka (2004) take into account that in the standard unit root
regression (42), the process fetg might have heavy tails, i.e., Prðjetj4xÞ 	 x�a as
x ! 1 for some a40, a is called the tail index. This assumption is relevant in our
case since some financial time series might not have a finite variance, i.e., ao2, and
indeed some of our generated series exhibit a large variance. For aX2 the standard
asymptotic theory for unit root tests is valid.
Horváth and Kokoszka (2003) and Jach and Kokoszka (2004) made the mild

hypothesis that the EðetÞ ¼ 0 and that the fetg are in the domain of attraction of an a-
stable law with a 2 ð1; 2Þ, while Kokoszka and Parfionovas (2004) considered the
more general case a 2 ð1; 2� which then includes the Gaussian case a ¼ 2. Chan and
Tran (1989) have shown that under the null hypothesis H0

TðŷT � 1Þ!
d
x :¼

R 1
0 Laðt�Þ dLaðtÞR 1

0
L2
aðtÞdt

; ð44Þ

where ŷT is the LS estimator of y in Eq. (42), fLaðtÞ; t 2 ½0; 1Þg is an a-stable Levy
process and Laðt�Þ denotes the left limit of Lað�Þ at t; see chapter 15 of Rachev and
Mittnik, 2000 for further details on this process. The purpose of the unit root and
subsampling tests considered here is to approximate the distribution of the unit root
statistic x without knowledge of the tail index a which is difficult to estimate (see
Embrechts et al., 1997).
Horváth and Kokoszka (2003) demonstrated that the distribution of the unit root

statistic x can be approximated using residual bootstrap, where the bootstrap sample
size m satisfies the bandwidth condition for processes with infinite variance m=T þ

1=m ! 0 as T ! 1 insuring the convergence of the bootstrap distribution mð~ym �

ŷT Þ to x.
Kokoszka and Parfionovas (2004) construct B bootstrap samples satisfying H0 as

e1ðkÞ ¼ ê1; ejðkÞ ¼ ej�1ðkÞ þ ejðkÞ; j ¼ 2; . . . ;m; k ¼ 1; . . . ;B; ð45Þ

where the ejðkÞ are randomly drawn with replacement from the �̂et. Denote by ~ymðkÞ

the LS estimator of the regression of ejðkÞ on ej�1ðkÞ, the distribution of TðŷT � 1Þ is
approximated by the distribution of mð~ymð�Þ � 1Þ. The choice of m is still an open
question, although results reported in Kokoszka and Parfionovas (2004) show that
taking m ¼ T yields a precise test. We choose m ¼ ½0:9T �.
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The subsampling method advocated by Jach and Kokoszka (2004) consists in
constructing T � b processes which satisfies H0, i.e.,

e1ðkÞ ¼ �̂ek; . . . ; ebðkÞ ¼ �̂ek þ � � � þ �̂ekþb�1; k ¼ 2; . . . ;T � b þ 1; ð46Þ

where b is the size of the subsampling blocks. Let ~ybðkÞ be the LS estimator of the
regression of ejðkÞ on ej�1ðkÞ, we estimate the distribution of x by the one of
bð~ybð�Þ � 1Þ. As in Jach and Kokoszka (2004), we set b ¼ ½0:15T � and use their
correction factor for the critical region of the test.
After Evans (1991) who pointed out that unit root based procedures were unable

to detect a class of bubbles, Wu and Xiao (2002) have shown that unit root tests do
not detect collapsible bubbles and have proposed a procedure, close in spirit to the
cointegration tests by Xiao and Phillips (2002), and based on the magnitude of
variation of the partial sum processes Sk ¼

Pk
t¼1 êt of the residuals of regression (41).

If there is no bubble, the magnitude of fluctuation of the process fSkg is proportional
to k1=2, while the presence of a bubble makes the process fSkg diverging to 1.
The statistic proposed by Wu and Xiao (2002) is based on the partial sum

processes Sþ
k of the transformed residuals ~eþt , so as to obtain a statistic, the limiting

distribution of which under the null hypothesis is unaffected by any consequences of
the serial correlation and the correlation between the residuals êt and the
fundamentals �Pt. Under the null hypothesis of no bubbles this statistic, denoted
by R, converges to the supremum of a rather complex functional of Brownian
motions, i.e.,

R :¼ max
1pkpT

k

ôe:d
ffiffiffiffi
T

p k�1Sþ
k � T�1Sþ

T

�� ��!d
sup

0ptp1

j ~V ðtÞj; ð47Þ

where ~V ðtÞ ¼ W dðtÞ � tW dð1Þ, W dðtÞ ¼ W 1ðtÞ � ½
R 1
0
dW 1S

0�½
R 1
0

SS0��1
R t
0

S,
SðtÞ0 ¼ ð1;W 2ðtÞÞ, W 1ðtÞ and W 2ðtÞ are Brownian motions that are independent
of each other, ôe:d is a nonparametric long-run variance estimator. For the
estimation of ôe:d we use the Bartlett lag window with the bandwidths used by Wu
and Xiao (2002), i.e., M1 ¼ ½4m%�, M2 ¼ ½6m%� and M3 ¼ ½8m%�, with m% ¼

ðm=100Þ1=4 and m ¼ ½T0:9�. We tabulate the statistic R for the sample size T ¼ 1500
used in our simulations using the quantiles of 100,000 simulations of this statistic for
a process where the price Pt differs from the fundamentals �Pt by a white noise
random variable, the fundamentals following a random walk, see Eq. (1). We
compare the results of this procedure with the ones provided by standard unit root
tests which serve as benchmarks.
5.2. Testing for changes in the volatility

5.2.1. Parametric and semiparametric tests

We consider a first class of tests for detecting change-points in the volatility, which
are based on the assumption that there is a unique change-point in the volatility
process, which is assumed to follow an ARCH/GARCH process. The parameters of
the ARCH/GARCH process are not constant and are changing at an unknown time
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denoted by t0, e.g., for an ARCH(1) process:

Rt ¼ mR þ et; EðetÞ ¼ 0; VarðetjI tÞ ¼ s2t ;

s2t ¼ oþ
X1
j¼1

aje2t�j ; t ¼ 1; . . . ; t0;

s2t ¼ o% þ
X1
j¼1

a%

j e
2
t�j ; t ¼ t0 þ 1; . . . ;T : ð48Þ

Under the null hypothesis H0 : o ¼ o%; aj ¼ a%

j for all j, while under the alternative
hypothesis HA : oao% or ajaa%

j for some j. Kirman and Teyssière (2002b) and
Teyssière (2003) used the CUSUM based estimator for change-point in ARCH(1)
processes proposed by Kokoszka and Leipus (2000). One of the assumptions for this
estimator is that the unconditional variance of the process changes after t0, which is
relevant for our purpose as the intensity of long-memory in the volatility spuriously
generated by a non-homogeneous ARCH/GARCH type processes is linked to the
magnitude in the change of the unconditional variance. This CUSUM estimator of
the change-point time is based on the process fUT ðtÞ; t 2 ½0; 1�g

UT ðtÞ :¼
ffiffiffiffi
T

p ½Tt�ðT � ½Tt�Þ
T2

1

½Tt�

X½Tt�

j¼1

R2
j �

1

T � ½Tt�

XT

j¼½Tt�þ1

R2
j

 !
ð49Þ

and is defined by

t̂ ¼ ½T t̂�; t̂ ¼ min t : jUT ðtÞj ¼ max
0otp1

jUT ðtÞj
� �

: ð50Þ

Kokoszka and Leipus (2000)applied this test to two series of returns on FX rates, the
German Mark–US dollar and the British Pound–US dollar FX rates, and detected a
change in regime in September 1979 which might be the consequence of the inception
of the European Monetary System in April 1979. Teyssière (1997) modelled the
conditional variance and covariance of the same series by a bivariate long-memory
ARCH process, and found a change in the long-memory structure of the conditional
covariance matrix after that inception date. These two results illustrate the interplay
of strong dependence and change-point for volatility processes.
We applied this CUSUM test to the series Rt generated by the microeconomic

models. A graphical representation of the process fwtg shows that this test detects
changes in the heteroskedastic structure which matches the switches in the process
fwtg. An illustration of the performance of this test is provided by Figs. 1 and 2,
other examples are reported in Kirman and Teyssière (2002b). We detect here the
occurrence of change-point with the test developed by Kokoszka and Leipus (1999),
that is based on the process fUT ðtÞ; t 2 ½0; 1�g, which under the null hypothesis of no
change-point converges to the process fsW 0ðtÞ; t 2 ½0; 1�g, i.e.,

UT ðtÞ �!
D½0;1�

sW 0ðtÞ; ð51Þ
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where �!
D½0;1�

means weak convergence in the space D½0; 1� endowed with the
Skorokhod topology, W 0ðtÞ is the Brownian bridge on the unit interval ½0; 1� defined
as W 0ðtÞ ¼ W ðtÞ � tW ð1Þ, W ðtÞ is the Wiener process. We consider here as test
statistic the functional based on the process fUT ðtÞ; t 2 ½0; 1�g

sup
0ptp1

jUT ðtÞj=s!
d

sup
0ptp1

jW 0ðtÞj; ð52Þ

where the long-run variance s2 is usually estimated by nonparametric kernel
methods. We use here the heteroskedastic and autocorrelation consistent estimator
by Newey and West (1987) with the truncations order q ¼ 0; 2; 5; 10; 15, and the
VARHAC estimator by Den Haan and Levin (1997), the order of dependence of
which is selected with the Bayes information parsimony criteria.
We also consider parametric tests for change-point based on the empirical process

of squared residuals of ARCH sequences proposed by Horváth et al. (2001), and
further extended by Berkes and Horváth (2003) to the general GARCH(p; q) case. In
Kokoszka and Teyssière (2002), we have seen that these tests have some power
against nonhomogeneous GARCH(1,1) sequences as well, provided that the
unconditional variance of the process changes after t0. We assume that for tpt0,
the observations follow the model

Rt ¼ mR þ et; et 	 Nð0; s2t Þ; s2t ¼ oþ bs2t�1 þ ae2t�1; ð53Þ

the unconditional variance of the process is o=ð1� a� bÞ, while for t4t0 the
observations follow the model

Rt ¼ mR þ et; et 	 Nð0; s2t Þ; s2t ¼ o% þ b%s2t�1 þ a%e2t�1: ð54Þ

Under the null hypothesis of no change in the data, the observations Rt; t ¼ 1; . . .T ,
follow the model (53), while under the alternative hypothesis the parameter vector
ðo; b; aÞ changes at some unknown time t0 so that o=ð1� a� bÞao%=ð1� a% � b%

Þ.
We fit a GARCH(1,1) process on the sequence of returns fRtg generated by the

microeconomic models, the tests being based on the sequential empirical process

K̂T ðt; tÞ :¼ T�1=2
X

1pip½Tt�

ð1ðê2i ptÞ � F ðtÞÞ; 0otp1; ð55Þ

where 1ð�Þ denotes the indicator function, ê2i are the squared residuals and F ð�Þ is the
density of the squared error terms e2t . Kokoszka and Teyssière (2002) considered the
Cramér–von Mises (CVM) type statistics as the CVM asymptotic test has the correct
size, even for GARCH(1,1) processes without fourth moments. For 1pkpT define

K̂ðk; tÞ :¼
ffiffiffiffi
T

p k

T
1�

k

T

� �
jF̂ kðtÞ � F̂

%

k ðtÞj; ð56Þ

where

F̂ kðtÞ :¼
1

k
#fipk : ê2i ptg; F̂

%

k ðtÞ :¼
1

T � k
#fi4k : ê2i ptg: ð57Þ

The CVM test consists in comparing the empirical distribution of the residuals
before and after tk. From the results in Horváth et al. (2001), for large T the
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Cramér–von Mises statistic has approximately the following asymptotic distribution:

B̂ :¼

Z 1

0

1

T

XT

i¼1

½K̂ð½Tt�; ê2i Þ�
2

( )
dt � B :¼

Z 1

0

Z 1

0

K2
ðt; uÞdudt; ð58Þ

where fKðt; uÞ; 0pt; up1g is the tied-down Kiefer process, the square-integral of
which has been studied in Blum et al. (1961). The critical values for B, derived from
Blum et al. (1961), are given in Kokoszka and Teyssière (2002).
Kokoszka and Teyssière (2002) introduced two tests for change-point in a

GARCH(1,1) process, based on the generalized likelihood-ratio (GLR) principle.
While the GLR tests still have some power for detecting changes in the parameters
when the unconditional variance of the GARCH(1,1) process remains constant after
the change-point time t0, the CVM is more powerful for detecting single and multiple
changes in the distribution of the innovations; see also Horváth et al. (2004).
Furthermore, for GARCH(1,1) processes without fourth moments, correct inference
for the GLR tests is provided by bootstrap based inference, which would be rather
computing intensive for the sample size considered in this work.

5.2.2. Online detection of change-points

So far, we consider posterior tests for change-points, i.e., tests which are applied
once the whole series R1; . . . ;RT has been generated and observed. The detection
procedure is off-line. In contrast, online or sequential change-points tests are applied
to the currently observed series for testing whether a change in the parameters
recently occurred.
Mikosch and Stărică (1999) proposed a goodness-of-fit test for detecting changes

in the parameters of a GARCH(1,1) sequence. If we assume that the sequence of
returns fRtg follows a GARCH(1,1) process, the fourth moments of which do exist,
under the null hypothesis of constancy of the parameters of this process into the
interval ½R1;Rm�, we have

MSm :¼
ffiffiffiffi
m

p
sup
l2½0;p�

Xm�1

h¼1

gmðhÞ

½VarðR0RhÞ�
1=2

sinðlhÞ

h

�����
�����!d

sup
l2½0;p�

jW 0ðlÞj; ð59Þ

where W 0ðlÞ is a Brownian bridge on ½0;p�, m is the window width of the so called
‘‘interval of homogeneity’’ ½R1;Rm�, gmðhÞ are the sample autocovariances at lag h,
the normalizing factor VarðR0RhÞ depends on the estimated parameters of the
GARCH(1,1) model and the estimated fourth moments of the innovations; see
Mikosch (1999) for further details. We consider a first interval of homogeneity
m ¼ 125 that we increment by a step-size equal to 1 until the null hypothesis of no
change-point is rejected. Then, we resume the procedure from the detected change-
point until the next detected change point or the end of the process.

5.2.3. Nonparametric tests for multiple change-points

These off-line tests do not make any assumption on the functional form of the
volatility process, but assume that the process fRtg is piecewise stationary. After a
suggestion by Murad Taqqu, we consider tests for change in the unconditional
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variance as Mikosch and Stărică (1999, 2002) claimed that the degree of long-
range dependence in asset prices returns is the consequence of a change in
the parameters of the conditional variance function, the intensity of strong
dependence being proportional to the magnitude of the change in the unconditional
variance of the process resulting from the changes in the parameters. Granger and
Hyung (1999) considered the test for change in the variance of a process fRtg

proposed by Inclán and Tiao (1994), which is based on the process fDT ðtÞ; t 2 ½0; 1�g
defined as

DT ðtÞ :¼

P½Tt�
j¼1R2

jPT
j¼1 R2

j

�
½Tt�
T

; t 2 ½0; 1�: ð60Þ

Under the null hypothesis of constant unconditional variance, the process
fDT ðtÞ; t 2 ½0; 1�g converges to a Brownian bridge on ½0; 1�. A test for constancy of
the unconditional variance is based on the following functional of the process
fDT ðtÞg, which under this null hypothesis of constant unconditional variance
converges in distribution to the supremum of a Brownian bridge on ½0; 1�

ffiffiffiffiffiffiffiffiffi
T=2

p
sup

0ptp1

jDT ðtÞj!
d

sup
0ptp1

jW 0ðtÞj: ð61Þ

Given that we are also considering large samples, i.e., over 1000 observations, the
occurrence of a unique change point is unlikely. We then have to find the
configuration s ¼ ðt0; t1; . . . ; tK Þ, i.e., the set of break fractions ft0 ¼ 0o
t1o � � �otK�1otK ¼ 1g so that the K � 1 change-points occur at times tj ¼ ½Ttj�,
j ¼ 1; . . . ;K � 1. The binary segmentation procedure is the standard method for
detecting multiple change-points with a test for single change-point, by splitting the
series at a detected change-point and repeat the detection procedure on the new
segments until no further change-point is found. Vostrikova (1981) studied and
proved the consistency of this method; further references on this issue are given in
Brodsky and Darkhovsky (1993). We use this binary segmentation procedure with
the tests by Inclán and Tiao (1994) and Kokoszka and Leipus (1999) for detecting
multiple changes in the variance of the returns generated by the microeconomic
models.
Specific tests for multiple change-points have been considered by Lavielle (1999),

Lavielle and Moulines (2000), and other authors cited as reference in these papers.
One approach consists in detecting the changes in the mean of the volatility proxy
series, i.e., the absolute returns jRtj and squared returns R2

t produced by the
microeconomic models. However, since the shifts in the mean of the series jRtj and
R2

t are the direct consequences of the changes in the unconditional variance of the
level series Rt, the straight approach consists in detecting these changes in the
unconditional variance.
We then consider the test for multiple changes in variance, which is a particular

case of Lavielle’s (1999) test for multiple changes in distribution, i.e., changes in
mean and variance. An interesting property of this method is that the rate of
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convergence to the true configuration s% ¼ ðt%

0 ; t
%

1 ; . . . ; t
%

K Þ does not depend on the
dependence structure of the data.
Let y ¼ ðs21; . . . ;s

2
K Þ 2 Y be the parameters of the process, and T be the set of

configurations s. We estimate the configuration of the series s, the number of change
points, and the vector of parameters y, by minimizing the penalized contrast
function, i.e.,

ðŝ; ŷ; K̂Þ ¼ arg min
1pKp �K

inf
ðt;yÞ2ðT�YÞ

1

T

XK

j¼1

kRj � �mRk
2

s2j
þ nj ln s2j

 !
þ bT K

( )
;

ð62Þ

where �K is the upper bound for the number of change-points, �mR is the empirical
mean of the returns process Rt, Rj denotes the set of observations Rt which belong to
the jth segment, and nj is the number of observations in that segment. The penalty
term is bT K , where the sequence fbT g satisfies bT ! 0 and T2�hbT ! 1 as T ! 1,
with h 2 ½1; 2Þ. The parameter bT controls the resolution level of the segmentation
~R ¼ fR1; . . . ;RKg and should be optimally chosen so that the number of change-
points K is neither underestimated nor overestimated: if the resolution parameter bT

is too large only few breaks are detected, while if bT is too small all small changes are
detected (see Lavielle, 1998 for further details). Since Lavielle (1999) underlines the
fact that there is no automatic rule for the choice of bT , we consider here the
formulas suggested by Yao (1988), i.e., bT ¼ lnðTÞ=T , and by Lavielle and Moulines
(2000) for the case of strongly dependent processes, i.e., bT ¼ 4 lnðTÞ=T1�W where
W 2 ð0; 1Þ is the scaling parameter of the series that we estimate with the
waveletestimator defined in Eq. (39). The maximum number of change-points is
set to �K ¼ 50. We use here the iterative conditional mode algorithm, which is not as
optimal as the simulated annealing algorithm as it can be ‘‘trapped’’ by local optima
in the optimization problem (62), but is computationally feasible for the large
number of simulations considered here.
5.3. Simulation results

The details of the simulation are as follows:

 T ¼ 1500, (sample size). We avoid transient effects by discarding for each
simulated series the first 200 observations and by keeping the next T ones.

 number of simulated series ¼ 10000,


 number of agents N ¼ 1000,


 the number of fundamentalists at the beginning of the process ¼ N=2, thus

k0 ¼ 0:5,


 P0 ¼ 1000,


 �P0 ¼ 1050,


 annual domestic interest rate, r ¼ 0:04, the daily domestic interest rate is
0.000133668,

 annual foreign interest rate, r ¼ 0:07, the daily foreign interest rate is 0.00018538,
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 For the forecast functions, h0 ¼ 0:6250, h1 ¼ 0:3685, n1 ¼ 0:6000,


 For the learning model, the memory of agents M ¼ 10, while K ¼ 0:09
and Z ¼ 12.

Notice that the choice of the parameters is not unique, as other configurations can
produce similar results. The series of error terms have been generated by using the
Box–Muller transformation, the sequence of uniform deviates used by this
transformation succeeds Marsaglia’s (1996) DIEHARD tests.
A series of standard tests were now run on the simulated data to see if it was

possible to reject alternative specifications which have different statistical
characteristics from those of the process used in the model. In particular it is
interesting to see if an econometrician faced with this data would have been able to
detect the bubbles in the level series and the changes in regimes in the volatility.
Results are displayed in the Appendix.
The presence of bubbles was quite always detected by the test by Wu and Xiao

(2002) for all the choices of the bandwidth parameter. We observe that the power of
this test monotonically decreases as the bandwidth increases. The standard
methodology based on unit root testing was not able to detect the bubbles, a result
which is casting doubts on the relevance of these methods for the detection of
bubbles on large samples, which are likely to contain collapsible bubbles.
Interestingly, the subsampling method by Jach and Kokoszka (2004) rejects less
often the null hypothesis of unit root than the tests by Paparoditis and Politis (2003)
and Kokoszka and Parfionovas (2004), and then detects 40% of the time the
presence of bubbles.
The wavelet analysis of the long range dependence parameter shows that the

average estimated scaling parameter (0.1389) of the absolute returns is far below the
one measured with the standard local Whittle estimator (0.6270). A similar result is
observed for squared returns. This result, which is similar to what is empirically
observed on real data, suggests the presence of changes in regimes in the series of
absolute and squared returns.
Nonparametric tests for multiple change points and the parametric sequential test

by Mikosch and Stărică (1999) for detecting changes in a GARCH(1,1) process
detected several changes in the volatility process. The test by Kokoszka and Leipus
(1999) and Inclán and Tiao (1994) detected several changes in regime, but less than
the number of change-points detected by Lavielle’s (1999) test. The result of the test
by Kokoszka and Leipus (1999) is not too much affected by the choice for the
estimator ŝ. The results of the test by Lavielle (1999) strongly depend on the penalty
term bT . Table 2 reports the results with bT ¼ 4 lnðTÞ=T1�W. For bT ¼ lnðTÞ=T , i.e.,
with the Bayes criterion, the average number of detected change-points increases to
22.3804, while for bT ¼ 4 lnðTÞ=T on average 2.2327 change-points are detected.
Since the results for bT ¼ 4 lnðTÞ=T1�W are consistent with the results of the tests by
Inclán and Tiao (1994) and Kokoszka and Leipus (1999), the choice of this
resolution parameter looks sensible.
The goodness-of-fit test by Mikosch and Stărică (1999) rejects more frequently the

null hypothesis of homogeneous conditional volatility. However, a rejection of the
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null hypothesis might be the consequence of the fact that the data are more volatile
than the ones implied by a GARCH(1,1) process, which is rather likely in our case.
The hypothesis of no change in regime was rejected 30% of the time by the CVM

test. A limited number of replications with bootstrap based inference seems to
indicate that bootstrap tests have a higher power.
Finally, the statistical properties of the generated series do not strongly differ

between the opinion diffusion models presented here, which is not surprising since
we tune the parameters of the microeconomic models so as to obtain statistical
properties close to the ones of real financial time series.
6. Conclusion

In this paper, we have discussed the problem of bubbles, their nature and in
particular their detection in empirical time series. The nature of bubbles is somewhat
ambiguous but can be summarised as a departure from fundamentals. We have
presented several versions of a model which lead to such departures and where there
is always a return to these fundamentals.
Our model suggests that the underlying reasons for the bubbles phenomena are

that there are switches in expectations caused by individuals changing their
forecasting rules. There is, in our model, a tendency for these changes to be self
reinforcing.
This leads to regime shifts albeit not of the sort typically found in the literature.

We discuss the econometric methods available to detect the change points in this
process. Standard unit roots tests perform poorly on the series generated by our
model. This is not surprising since the process is indeed a unit root one for some of
the time. Nevertheless some of the recent tests that we use do remarkably well in
picking up these shifts.
The regime shifts are important since it is often argued that the property of ‘‘long

memory’’ in financial series is often spurious and due to switching regimes. Our
analysis shows that there is a combination of ‘‘genuine’’ long memory in the physical
sense and of the switching regime effect. To be more precise, a wavelet analysis of the
series generated by our models shows that the strong persistence in the volatility is
likely to be the outcome of a mix of changes in regimes and a moderate level of long-
range dependence.
We seem thus to have made significant progress towards the detection of bubbles.

At the same time there is the problem of the different possible origins of such
phenomena.
Our model is but one of the possible explanations for the bubbles phenomenon,

and others such as the presence of expectations of the expectations of others (see
Allen et al., 2003). The tests proposed should be a step towards enabling us to
distinguish between these explanations. Another interesting route is to try to
differentiate between the sort of chaotic models proposed for example by Brock and
Hommes (1997) and the stochastic process that we propose. Recent work by
Bhansali et al. (2003, 2004) shows that chaotic intermittent dynamics can produce
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long memory and it would be an interesting research problem to see to what extent
the distinction between this sort of dynamic and that of our simple stochastic process
can be made.
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Appendix A

Bubble test and change point test are given in Tables 1 and 2. Table 3 shows the
sealing coefficient for the absolute and squares returns.
Table 1

Bubbles tests (Test size 5%)

Model P–P K–P J–K W–XM1
W–XM2

W–XM3

Without memory 0.8380 0.9542 0.6029 0.9911 0.9507 0.8716

With memory 0.8692 0.9680 0.6947 0.9971 0.9651 0.8982

P–P: Percentage of rejection of the unit root hypothesis with the test by Paparoditis and Politis (2003),

K–P: Percentage of rejection of the unit root hypothesis with the test by Kokoszka and Parfionovas (2004),

J–K: Percentage of rejection of the unit root hypothesis with the test by Jach and Kokoszka (2004),

W–X: Percentage of rejection of the hypothesis of no bubbles with the test by Wu and Xiao (2002), for

different choices of the bandwidth parameter: M1;M2;M3.
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Table 3

Estimation of the scaling coefficient for the absolute returns and squared returns

Model Local Whittle jRtj Wavelets jRtj Local Whittle R2
t Wavelets R2

t

Without memory 0.6270 0.1389 0.5898 0.1456

With memory 0.5868 0.0875 0.5678 0.0914

Table 2

Change-point tests

Model CVM K–L I–T Lav. M–S

Without memory 0.2890 2.9605 4.0300 1.9081 6.9059

With memory 0.2875 2.2346 3.6510 1.7302 5.3871

CVM: Percentage of rejection of the null hypothesis of no change point, for the Cramér–von Mises test

(Test size 5%),

K–L: Average number of change-points detected by the test by Kokoszka and Leipus (1999), combined

with the binary segmentation procedure,

I–T: Average number of change-points detected by the test by Inclán and Tiao (1994),

Lav.: Average number of change–points detected by Lavielle’s (1999) test,

M–S: Average number of change-points detected by the goodness of fit test by Mikosch and Stărică (1999).
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Appendix B

Figs. 1 and 2 refers to different process fwtg. Fig. 3 indicates that mðkÞ depends on
the values of e, d and N.
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Berkes, I., Horváth, L., 2003. Limit results of the empirical process of squared residuals in GARCH

models. Stochastic Processes and their Applications 105, 271–298.
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